Personal tools
log in | join | help

Window Performance 4 – Dealing with edge losses

by LiveModern Webmaster last modified Apr 11, 2012 01:01 AM
Editorial Rating: 1 2 3 4 5
Average Rating: 1 2 3 4 5 ( 0 votes)
by Alex Wilson last modified Apr 10, 2012

Edgetech makes the Super Spacer silicone foam glazing spacer, which is the most effective spacer for slowing heat loss. Graphic: Edgetech. Click on image to enlarge. Over the last three weeks I've focused on the major strategies for improving the ... Better glazing spacers Most glazing spacers today are made of hollow aluminum channel. Aluminum is an easy material for manufacturers to work with, and the cavity formed by the channel allows a desiccant to be added that adsorbs any water vapor that gets into the insulating glass unit (IGU) during manufacture. The problem with aluminum is that it's highly conductive, readily transferring heat from the warm inner pane of glass to the cold outer pane. Because of this heat loss, the inner pane of glass often cools off enough that water vapor from the indoor air condenses on it--and you get droplets of water forming on the inside of the window. If you have wood windows, that condensate often wets the wood, causing staining or even rot. We indicate risk of condensation forming on a window using a standardized measure from the National Fenestration Rating Council , "Condensation Resistance." This is expressed as a number between 1 and 100, with higher numbers indicating greater resistance to condensation. So, what to do about it? Manufacturers have worked hard over the past several decades to deal with the problem. Here are the primary options: Comparison of interior glass surface temperatures at the glazing edge with different types of glazing spacers. Graphic: Click on image to enlarge. Stainless steel Stainless steel is just 1/15th as conductive as aluminum. Furthermore, stainless steel is a lot stronger, so glazing spacers made out of stainless steel can have thinner walls. Conductivity is proportional to the cross-sectional area of the material through which heat is flowing, so stainless steel glazing spacers are better for two reasons: lower conductivity and thinner walls. Butyl rubber Butyl rubber is a great sealant because it sticks really well to glass and other materials, and it's also a good insulator. Rubber is 120 times less conductive than stainless steel and 1900 times less conductive than aluminum. To work as a glazing spacer, a thin reinforcing metal strip is used to maintain the proper thickness. The strip of metal increases the conductivity (though the metal never contacts the glass); the spacer's conductivity remains a lot lower than an all-metal spacer. A desiccant is incorporated into the butyl rubber. Swiggle Seal, the first so-called "warm-edge spacer," was introduced in 1979. The name refers to the thin ribbon of metal reinforcement that is in a wavy shape. While the edge of an IGU with low-e2 and a standard aluminum spacer has a condensation resistance of 19.3, according to testing done by Enermodal Engineering , with butyl rubber and a metal strip that condensation resistance improves to about 38. Swiggle Seal used to be manufactured by TruSeal, but there appear to be numerous Chinese manufacturers of such a product today. Silicone foam The least conductive glazing spacers are made of silicone foam. These inorganic foams don't soften as much as butyl rubber and lose their shape, so they don't require strips of metal reinforcement. Like the butyl rubber spacers, a desiccant is formulated into the silicone foam. The dominant product on the market employing this technology is the Super Spacer , made by Edgetech in Cambridge, Ohio (which is now owned by Quanex Building Products Corporation ). Super Spacer is made of silicone foam with no metal reinforcement. Several additional layers are added to make the foam impervious to vapor--both to keep water vapor from getting in and to keep any low-conductivity gas fill, such as argon, from escaping. The condensation resistance of the above-described IGU with this glazing spacer is 44.9. Bottom line Along with minimizing the risk of condensation at the edges of windows, warm-edge spacers will improve the overall unit U-factor of a typical residential, double-glazed window by about U-0.02 Btu/hr·ft2·°F. For example, if the unit U-factor with standard aluminum spacers would be 0.30, the warm-edge spacers would reduce that to 0.28. That improvement (reduction in heat flow) might sound modest, but it adds up! Alex is founder of BuildingGreen, Inc. and executive editor of Environmental Building News . Watch for a forthcoming BuildingGreen special report on windows. To keep up with his latest articles and musings, you can sign up for his Twitter feed .






Website migration, maintenance and customization provided by Grafware.